A Random-Model Approach to QTL Mapping in Multiparent Advanced Generation Intercross (MAGIC) Populations.

نویسندگان

  • Julong Wei
  • Shizhong Xu
چکیده

Most standard QTL mapping procedures apply to populations derived from the cross of two parents. QTL detected from such biparental populations are rarely relevant to breeding programs because of the narrow genetic basis: only two alleles are involved per locus. To improve the generality and applicability of mapping results, QTL should be detected using populations initiated from multiple parents, such as the multiparent advanced generation intercross (MAGIC) populations. The greatest challenges of QTL mapping in MAGIC populations come from multiple founder alleles and control of the genetic background information. We developed a random-model methodology by treating the founder effects of each locus as random effects following a normal distribution with a locus-specific variance. We also fit a polygenic effect to the model to control the genetic background. To improve the statistical power for a scanned marker, we release the marker effect absorbed by the polygene back to the model. In contrast to the fixed-model approach, we estimate and test the variance of each locus and scan the entire genome one locus at a time using likelihood-ratio test statistics. Simulation studies showed that this method can increase statistical power and reduce type I error compared with composite interval mapping (CIM) and multiparent whole-genome average interval mapping (MPWGAIM). We demonstrated the method using a public Arabidopsis thaliana MAGIC population and a mouse MAGIC population.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of Three Rice Multiparent Advanced Generation Intercross (MAGIC) Populations for Quantitative Trait Loci Identification.

Three new rice ( L.) multiparent advanced generation intercross (MAGIC) populations were developed using eight elite rice varieties from different breeding programs. These three populations were two recombinant inbred line (RIL) populations derived from two 4-way crosses, DC1 and DC2, and one RIL population derived from an 8-way cross. These populations were genotyped using an Illumina Infinium...

متن کامل

A general modeling framework for genome ancestral origins in multiparental populations.

The next generation of QTL (quantitative trait loci) mapping populations have been designed with multiple founders, where one to a number of generations of intercrossing are introduced prior to the inbreeding phase to increase accumulated recombinations and thus mapping resolution. Examples of such populations are Collaborative Cross (CC) in mice and Multiparent Advanced Generation Inter-Cross ...

متن کامل

Reconstruction of Genome Ancestry Blocks in Multiparental Populations.

We present a general hidden Markov model framework called R: econstructing A: ncestry B: locks BIT: by bit (RABBIT) for reconstructing genome ancestry blocks from single-nucleotide polymorphism (SNP) array data, a required step for quantitative trait locus (QTL) mapping. The framework can be applied to a wide range of mapping populations such as the Arabidopsis multiparent advanced generation i...

متن کامل

A Random Model Approach to QTL Mapping in Multi-parent Advanced Generation

27 28 Most standard quantitative trait locus (QTL) mapping procedures apply to populations derived 29 from the cross of two parents. QTL detected from such bi-parental populations are rarely 30 relevant to breeding programs due to the narrow genetic basis; only two alleles are involved per 31 locus. To improve the generality and applicability of mapping results, QTL should be detected 32 using ...

متن کامل

A Multiparent Advanced Generation Inter-Cross to Fine-Map Quantitative Traits in Arabidopsis thaliana

Identifying natural allelic variation that underlies quantitative trait variation remains a fundamental problem in genetics. Most studies have employed either simple synthetic populations with restricted allelic variation or performed association mapping on a sample of naturally occurring haplotypes. Both of these approaches have some limitations, therefore alternative resources for the genetic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 202 2  شماره 

صفحات  -

تاریخ انتشار 2016